
Using the Major High-Energy-Density Facilities as a University Professor

R. Paul Drake **University of Michigan**

May, 2004

Work supported by the U.S. Department of Energy under grants DE-FG03-99DP00284, DE-FG03-00SF22021 and other grants and contracts

This talk concerns who what and how

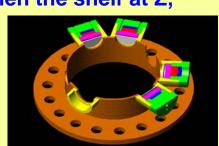
- Who am I?
 - Why am I qualified to discuss this subject?
- What
 - modes of use of HED facilities are possible and desirable?
 - in the world can one do about targets?
 - does it take to get design support?
 - about diagnostics?
 - would I say about existing programs?
- How could one create a national community of HED users?
 - Are the HED laboratories the answer?
- My narrow task: Life as a (university) user
 - No time to share the great HED physics we've done that way

My acknowledgements hint at qualifications

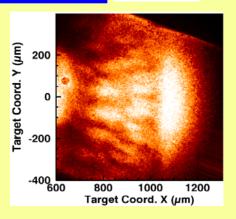
My group at Michigan

 Korbie Dannenberg, Amy Reighard, Melanie Blackburn, Carolyn Kuranz, Eric Harding, Peter Susalla, Dave Leibrandt, Mike Grosskopf, Doug Kremer, Saida Caballero, and UROP students Trisha, Jon, Zheng, & Ko

Collaborators from


- NRL: James Weaver, Yefim Aglitskiy
- SNLA: Tom Mehlhorn, Marcus Knudson, and
- LLE & U of R: Jim Knauer, Tom Boehly, Adam Frank
- LLNL: Bruce Remington, Harry Robey, Gail Glendenning, and ...
- LANL: Bernie Wilde, Nels Hoffman, and
- Chicago/FLASH: Bob Rosner, Tomek Plewa, Alexei Khokhlov, and ...
- SUNY: James Glimm and Yongmin Zhang
- Princeton: James Stone
- CEA: Serge Bouquet, Laurent Boireau
- LULI: Michel Koenig, Tommaso Vinci
- Support from DOE/SSAA, DOE/NLUF, NRL, SNLA

We have comprehensive specific experience



- My group at Michigan has
 - Done shots through Science Use of Nova
 - Done many shots at Omega through the National Laser
 User Facility
 - Done shots at Trident supported by Los Alamos
 - Put targets on the schedule then the shelf at Z,

supported by Sandia

- In addition we are now
 - Preparing for experiments on NIKE supported by NRL
 - Involved in planning discussions for experiments on NIF

Some context on university finances is essential to the following discussion

- Inflation exists
 - One's notions about costs get old fast
- What should a university group be?
 - Apprentice mode seems outdated, expensive, and inefficient
 - Experience in a group of students is worthwhile
 - Undergraduates and participation in the community add a lot

Eric Harding (Graduate Student)

- The professor's job is to pay for all this
 - Grad students who do nothing cost 53 k\$ this year at Michigan.
 - In reality one must pay for the student, the professor, hardware, travel, computers, undergrads, and technical support.
 - The loaded cost of an experimental student might be 200 k\$, or perhaps more.
- So a group with 5 students and limited technical staff would need 1 M\$ (this year).

Saida Caballero and Koichi Murai (Undergraduate Students)

There must be fifty ways to use your laser...

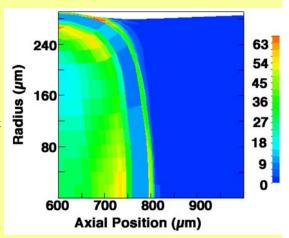
- ... but perhaps three limiting cases
- The participating guest investigator
 - Experiments performed by a facility team
 - University involvement is peripheral and very personality dependent
 - Very limited funding: no way to sustain a grad student program
- The collaborator with big labs
 - University personnel participate essentially in experiments
 - Collaborators from big labs carry vital loads too
 - For example targets, diagnostics, organization, simulation
 - This is the mode my group is mainly in now at > 500 k\$ per year
- The independent experimenter
 - University personnel conduct the experiment on their own
 - Would require more technical staff
 - Would require abilities in targets, simulations, diagnostics, etc
 - Consistent with vision of a community but these are 2 M\$/yr groups
 - There are no such facility-using groups today in HED physics

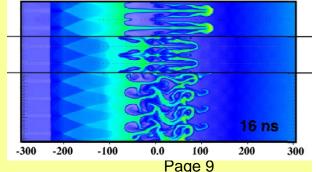
The problem of mistakes

- In sharp contrast to small university labs, one can afford few mistakes in a big-facility environment.
- The is doubly true when one must compete for limited access
- In the end this drives up costs.
- Checking the students' conclusions falls on
 - The professor whose time is constrained
 - The big lab collaborator whose time is constrained
 - Other students if they exist
 - University scientific staff if they exist
- The traditional mode of throwing a student into a lab and telling them to come out when they have something does not work here.

Targets are an enormous challenge

- They cost a lot
 - Comparable to the laser time. 10 k\$ per shot and up from the labs
- They are part of the experiment
 - Target design is nearly always a tradeoff among science, cost, and feasibility
 - Targets need to change from one shot day to the next
 - No way to specify and forget, and more thinking improves the specific
- I am skeptical about using third party suppliers for entire targets
 - Targets are a 3D CAD problem but universities aren't staffed for this
 - Supplying target components from third parties seems excellent
- Our approach at Michigan
 - We began by relying on big labs and still do
 - We also now build targets
 - This has very strong educational benefits
 - At the cost of some technical support


Design simulations are another challenge



- 1D design is easy
 - There are a couple of good tools and we use them
- 2D design is hard
 - Needed for effects of walls, edges, finite laser spot, etc
 - No good tool exists outside the fence
 - Even if it did, this is hard for an experimental group
 - No one inside the fence can make a career of design support

- They run 3 simulations and write a paper (an exaggeration)
- Design requires dozens of simulations and the paper often comes years later
- Design-oriented university groups could flourish
 - But only as part of a well funded community
- Meanwhile one catches as catch can
 - Cheers for random students here and in France

Diagnostics could be an issue and are an opportunity

- Experiments depend essentially on diagnostics
- Across facilities, diagnostic support and options vary
 - at the moment my group relies heavily on LLNL for work at Omega
- The HED community also is lacking an important element
 - There are few (perhaps one?) groups that develop diagnostics for HED facilities as a major activity
 - This eliminates a source of improved technologies
 - It also eliminates one natural mode of interacting with facilities
 - Other communities use university diagnostic groups extensively and effectively
 - This is a proven mode way to get technology, training, and broad participation!!

Some comments on specific user programs

Science use of Nova

- Got some basic science and some university involvement
- Very much guest investigator mode
- National Laser User Facility
 - A good model overall
 - If one wants to build a university community then student involvement should be a review criteria
 - Targets have not been addressed (might be changing)
 - Historically very underfunded (in the context of HED univ. funding)

MIAs

- NIF (This is supposed to be a National Facility. Good Grief!)
- Trident (might take a LANL culture change or very dedicated funds)
- Z (might take a SNLA culture change or very dedicated funds)
- NIKE (perhaps an issue of mission)

So how could one build a community of university users of HED facilities?

- The HED laboratories are not the answer
 - We have tremendous, positive interactions with individuals and groups
- But the institutions seem unable to sustain the long view needed by Ph.D. students
 - Livermore seems unable to look more than 6 months ahead
 - NIF should have a university program launching but does not
 - Los Alamos seems to manage their money so they are always broke
 - Trident should be funding university users but is not
 - Sandia tries to; seems to be constrained by their success
 - Sandia supports some university groups but involvement in Z is limited
 - LLE Rochester does a good job with their funded user program
 - They stick close to it, too
 - Current Nike management takes the long view but it's a small program
- The answer is money from agencies to the universities
 - Need quite a few pots each at several M\$ per year and up
 - Need some 2 M\$/yr groups
 - Need a variety of user programs on different facilities
 - Need to address targets and design support in the process

The bottom line

- Tthere is the precursor to a High-Energy-Density Physics university communit
- But there is not yet more than a glimmer of a community of HED facility users
- There are technical and institutional issues
- But money is the big limitation

The book and the Summer School

- I expect to finish the draft of High Energy Density Physics this summer (to be published by Springer-Verlag)
- Taught at Michigan in 2003
- Summer School in High Energy Density Physics
 - in Traverse City this August
- Topics covered:
 - Fundamental Equations and Equations of State
 - Shocks, Rarefactions, and their Interactions
 - Hydrodynamic Instabilities
 - Radiative Transfer
 - Radiation Hydrodynamics
 - Creating High-Energy-Density Conditions
 - Inertial Fusion
 - Experimental Astrophysics
 - Relativistic Systems